

ENGINEERING EYOBUNJINELI INGENIEURSWESE

M&M Post-Graduate Topics

November 4, 2024

forward together sonke siya phambili saam vorentoe Mechanical & Mechatronic Engineering department Departement Meganiese & Megatroniese Ingenieurswese +27 21 808 4376 | meganies@sun.ac.za | https://www.eng.sun.ac.za/ Private Bag X1 | Privaat Sak X1 | Matieland 7602 | South Africa | Suid-Afrika

Contents

Mr Johann Bredell	3
Dr Nur Dhansay	4
Mr. Rashid Haffejee	5
Prof Jaap Hoffmann	7
Prof Ryno Laubscher	11
Prof Craig McGregor	12
Prof Josua Meyer	19
Dr Michael Owen	22
Dr Hannes Pretorius	27
Dr Willie Smit	35
Dr Gerrit Ter Haar	36
Prof Eugene van Rensburg	38
Prof Johan van der Spuy	40

Mr Johann Bredell jrbredell@sun.ac.za

• Research Field Structural analysis and design. Wind engineering.

• General Description of Research Field Structural analysis and design. Wind engineering. Solar tracking structures. Finite element analysis.

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Design and analysis of PV support structurers		\checkmark		\checkmark
Cost effective and durable support structures are key to the success of solar photovoltaic power generation. Noval approaches are needed to quantify the loads and resistances associated with fixed-tilt and tracking structures to ensure structural reliability. The research is likely to involve both experimental and simulation work. The topic will be formulated in cooperation with an industry partner to address a specific need. There may be a possibility of funding.				
Requirements: FEM				
Design and analysis of glass alternative concentrated solar power reflectors		\checkmark		
The most common material for reflectors used in the concentrated solar power (CSP) industry is mirrored glass. However, glass has many undesirable properties. The research aims to develop fea- sible glass alternative reflectors for CSP applications. The project will involve structural design, building of prototypes, and perfor- mance testing. Various simulation technologies can also be incor- porated in the project.				
Requirements: FEM				

Dr Nur Dhansay

nurmdhansay@sun.ac.za

- Research Field Fracture Mechanics
- General Description of Research Field

The investigation of cracks propagating through a material. The focus typically lies in providing crack prediction models for the various mechanisms of fracture. The general fracture mechanisms include fatigue, creep, stress corrosion cracking and environmentally induced cracking. A variety components in real world applications undergo loading application which produces the failure mechanisms mentioned previously. It is therefor of benefit to better understand these mechanisms in order to produce more accurate crack prediction models and prevent any unwanted failure/fracture in components.

-	0	PhD	Potential
uct	Resrch		Funding
	~		
<u>ru</u>		ict Resrch	ICT Resrch

Mr. Rashid Haffejee rhaffejee@sun.ac.za

• Research Field Thermofluid Systems Modelling

• General Description of Research Field

Thermofluid network modelling is a powerful simulation tool that can be applied to study complex thermofluid systems, ranging from utility-scale power cycles, and heating and refrigeration to human cardiovascular dynamics. Thermofluid network models can be used to predict the performance of these complex systems for wide ranges of operating conditions, which helps to design, optimise and manage these intricate systems.

By also incorporating machine learning techniques with thermofluid networks, condition monitoring tools can be developed to help detect anomalies, aid in design optimisation, and also drive breakthroughs in enhancing energy efficiency.

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Optimization of a natural draft direct dry cooling system (ND- DDCS) for a supercritical carbon dioxide (sCO2) power cycle using an artificial intelligence based surrogate model		√		
Global research interest into supercritical CO2 (sCO2) power cy- cles is increasing, due to their superior efficiencies and reduced component size requirements. These cycles, linked to concentrated solar power (CSP) applications represent a modern evolution to sustainable and efficient power production. The sCO2 cycle needs a heat rejection system to dissipate heat loads from the pre-cooler and intercooler heat exchangers to the environment. To further enhance cycle efficiency and promote sustainability, a heat rejec- tion system with low parasitic power- and no water consumption requirements would be very beneficial.				
Modern thermal power plants in arid and semi-arid locations em- ploy water conserving dry cooling technologies to reject the re- quired heat from the cycle to the environment. Among these tech- nologies are traditional mechanical draft air-cooled condensers (ACCs), natural draft indirect dry cooling systems and a new al- ternative, the natural draft direct dry cooling system (NDDDCS). This study will optimize a NDDDCS for the pre-cooler and inter- cooler heat loads of a sCO2 power cycle, linked to a 50 MWe CSP plant. The work will modify and utilize an existing co- simulation model (coupled Flownex one-dimensional and Fluent three-dimensional Computational Fluid Dynamics model) that has been developed to assess the performance of a NDDDCS specifi- cally for this application. The optimization will consider alterna- tive cooling tower shape and heat exchanger configurations. A neural network surrogate model, to be developed using the co- simulation model, will be used to perform the optimization. (This project will be co-supervised by Mr Rashid Haffejee and will form part of research conducted by the Solar Thermal Energy Re- search Group)				
Requirements: Strong interest and performance in Thermo-fluids modules. Computational Fluid Dynamics.				

Prof Jaap Hoffmann hoffmaj@sun.ac.za

• Research Field Solar thermal energy

• General Description of Research Field

Solar thermal energy is a source of clean energy for electricity generation, process heat and thermal comfort that is unfortunately only available while the sun is shining. Thermal energy storage in rock beds using air as heat transfer fluid provides a low cost solution to store energy harvested during the day for night-time use. The large size of rock bed thermal energy storage, and irregular nature of crushed rock particles means that much of previous research done on prismatic beds of spherical particles is inadequate to describe pressure drop and heat transfer through packed beds. Hydrogen fuel cells and electric vehicles are the most promising substitutes for petrol and diesel driven vehicles in a post fossil fuel work. Hydrogen vehicles offer ranges and refueling times like those achieved by internal combustion engines. Hydrogen is a form of chemical energy that can be stored indefinitely. On the downside, hydrogen infrastructure is lagging that of electricity distribution. Overall, the outlook for hydrogen as a replacement for petrol and diesel in the transport sector is positive provided that it can be produced competitively. The copper-chlorine cycle as the most promising of all the thermochemical cycles for hydrogen production. In this cycle, water (steam) first reacts with CuCl2 to form HCl, and the HCl is then split into H2 and CuCl in an electrolyzer. Splitting HCl requires only about a third of the electricity input of that of splitting H2O. To facilitate the chemical reactions and recycle chemicals, the cycle requires several heat inputs at different temperatures. Some reactions are exothermic, and the heat released can be internally recycled to reduce the overall heat requirement of the cycle.

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Turbulence modelling in porous media		\checkmark	\checkmark	
Flow through porous media is tortuous, and the presence of the				
solid matric causes additional turbulence production that is not				
present in flow through open channels. This turbulence helps to				
redistribute heat and momentum in a porous media. There are a				
few models in the literature to capture the extra turbulence pro-				
duction in the k-epsilon framework, but none (or few) for the k-				
omega turbulence models. Develop and validate (through the use				
of appropriate source terms) a model that can predict the extra				
turbulence dispersion in packed beds. Closure might be achieved				
on RANS, LES or DNS level. This project is expected to be mathe-				
matically intensive.				
Requirements: Numerical Fluid Dynamics 414/814 or equivalent				

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Solar hydrogen generation using the Cu-Cl cycle The Cu-Cl cycle was developed and demonstrated by Ontario Tech in Canada. This cycle requires a heat source (about 530 °C) and electricity. Both requirements can be met by a molten salt concen- trated solar power (CSP) plant. The challenge is to find a suitable configuration of CSP plant to serve both high and low (100 °C) temperature heat exchangers - molten salts typically solidifies at about 250 °C. The student must develop, validate, and integrate working models of a CSP plant and the Cu-Cl cycle. The models (s) should be able to predict the shut-down procedure required when the CSP plant is running low on (stored) thermal energy. Sev- eral of these plants might be situated around South Africa where there are sufficient solar and (fresh) water resources to run the plant, and the necessary infrastructure to transport the product to a point of export/end use. Site selection forms part of the project, as well as the economic feasibility of the project. The student will	Struct	Resrch	•	Funding
spend 3 - 6 months at Ontario Tech. Requirements: Solar Thermal Energy Systems 814 A strong back- ground in thermofluids will be advantageous.				
Thermal radiation in a packed bed		\checkmark	\checkmark	
At high temperatures, radiation plays a significant role in the heat transfer in packed beds. This radiation may be modeled via a par- ticipating medium, but the absorption and scattering of radiation in the medium are expected to depend on particle size and shape, thermal conductivity, surface emissivity, and the porosity of the bed. Existing models make use of modifications to the effective thermal conductivity to cater for thermal radiation, but it gives poor results when the medium interacts with external structures. In this study, the student should extract the bulk radiation properties of the bed from CFD/DEM simulations, and validate it against experimental data. Requirements: good CFD skills will be advantageous.				
Solar still with a submerged absorber	\checkmark			
Interfacial evaporation in a solar still make effective use of the available sunlight as the bulk water remains cold, whilst evaporation happens only at the top of a membrane. The membrane wicks water to its upper surface. When using concentrated sunlight, the evaporation rate can exceed the transport rate of water through the membrane, leading tot dry-out. When this happens, evaporation stops. A submerged absorber can take advantage of a high surface temperature, whilst providing free access of water to the surface. The challenge is to develop a submerged membrane that mimics interfacial evaporation without any liquid flow restriction. Requirements: A solid background in undergraduate thermofluids subjects is required.				

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Particle characterization for pressure drop in an anisotropic packed bed		~	\checkmark	~
The usual parameters like particle size, shape (sphericity or aspect ratio) and porosity fail to explain why the pressure drop in a packed bed of crushed rock particles differ for different flow directions through the bed. This is most notable when the flow is vertical or horizontal with respect to the pour direction of the particles. It is expected of the student to introduce new particle or bed (tortuosity) characteristics that can declare this behaviour. Using a CFD/DEM approach for particles with a simple geometric shape with aspect ratio's other than 1 may provide valuable information about the local flow patterns that contribute to the overall effect, but it will require experimental validation.				
Requirements: A working knowledge of CFD will be advatageous.				
Climate control in a greenhouse using solar thermal energy For optimal crop growth, greenhouse temperatures and humidity must be kept within narrow bands. Harvested solar energy col- lected during the day can be released to raise night-time tempera- tures, or cooler temperatures at night may be released to cool the greenhouse on warm days. The student should develop a thermal energy storage facility capa- ble of preventing cold damage to crops, and evaluate its economic feasibility. Requirements: A working knowledge of CFD is recommended.	√			
Critical evaluation of the Ergun equation for anisotropic packed beds The Ergun equation is widely used in modelling flow through porous media for its simplicity. It depends on only a few parame- ters, like (the area equivalent) spherical diameter of the particles, fluid properties, and the porosity of the bed. The Ergun equation seems to work reasonably well for plug flow. However, the val- ues of the (constant) coefficients in the Ergun equation is disputed in the literature. Some researchers reported a Reynolds number dependence of the coefficients, whilst other introduced extra (but often difficult to measure) parameters into the equation. It is expected that the student derive an alternative formulation for the pressure drop through an anisotropic bed, and validate it against experimental data. Using a combination of CFD and DEM will yield detailed informa- tion about the local flow patterns to inform the model, but isn't a necessary requirement to complete the project. Requirements: Good CFD skills might be advantageous.				

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Heat transfer and pressure drop in a packed beds of variable		\checkmark		
sized particles				
Flow and heat transfer in a packed beds is usually described in				
terms of a representative spherical particle. When the bed com-				
prise of particles spanning a wide range of sizes (dmax $>$ 5*dmin),				
this approximation may break down.				
It is expected of the student to come up with an appropriate for-				
mulation of the Reynolds number for the bed (usually a function				
of particle size, shape and porosity of the bed). Use this Reynolds				
number (and perhaps tortuosity) to define new correlations for the				
friction factor and Nusselt number.				
Using a CFD/DEM approach of the bed will give valuable insights				
into local flow and temperature profiles to inform the model(s).				
Validation of the model(s) against experimental data is required.				
Part of the project may be conducted at Sherbrooke or McGill Uni-				
versity in Canada.				
Requirements: A working knowledge of CFD will be advanta-				
geous.				

Prof Ryno Laubscher

rlaubscher@sun.ac.za

• Research Field Thermal-fluid dynamics

• General Description of Research Field

Fundamental and applied research in combustion systems, heat exchangers and power cycles. Additionally my research focusses on the development of novel AI-based partial differential equation solvers for thermal-fluid problems.

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Optimization of turbomachinery layout for concentrated solar			\checkmark	
sCO2 power cycles with the aid of integrated thermofluid net-				
work modelling				
Supercritical carbon dioxide (sCO2) power cycles have been iden-				
tified as a promising future power conversion technology due to				
its high cycle efficiency and compact footprint. Using sCO2 power				
cycles with concentrated solar power (CSP) technology would lead				
to smaller mirror fields compared to Rankine-based CSP plants				
that has the same power output level, making it a more competi-				
tive renewable energy solution. One of the major costs associated				
with sCO2 power cycles is that of the large recuperator heat ex-				
changers. Researchers have shown that the heat exchangers can				
be drastically reduced in size, and thus cost, if the turbomachin-				
ery efficiencies are increased even marginally. The present project				
sets out to compare and optimize various turbomachinery layouts				
for a 50 MWe CSP sCO2 power cycle with the aid of integrated				
thermofluid network models. The study will include different tur-				
bomachinery types, such as centrifugal and axial, along with dif-				
ferent shaft configurations, such as dual- and single-shaft layouts.				
Gradient-based and metaheuristic optimization algorithms will be				
applied to the integrated cycle simulation models to tune turboma-				
chine parameters such as blade solidity and blade aspect ratios for				
the various compressors and turbines. The study will cover both				
steady-state and transient operating scenarios.				
Requirements: Mechanical engineering undergraduate degree.				

Prof Craig McGregor craigm@sun.ac.za

• Research Field Solar thermal energy, green hydrogen

• General Description of Research Field

Solar thermal Energy and Green Hydrogen research, focusing on:

* techno-economic analysis * systems engineering and optimization * heliostat design and mechatronics * thermofluid design of solar receivers and thermal energy storage systems * industrial application of solar thermal heat * power cycle design for CSP and high temperature heat pumps

Design and configuration of solar thermal multi-tower field layoutStructCentral receiver CSP plants, or power towers, are built on a very large scale (typically 50 to 100 MW or more). They require sig- nificant capital, and the 150- to 250-metre-tall tower can take up to two years to build. Conversely, utility photovoltaic (PV) plants can potentially be constructed within six months and re-	MEng	PhD	Potential
Design and configuration of solar thermal multi-tower field layout Central receiver CSP plants, or power towers, are built on a very large scale (typically 50 to 100 MW or more). They require sig- nificant capital, and the 150- to 250-metre-tall tower can take up to two years to build. Conversely, utility photovoltaic (PV) plants can potentially be constructed within six months and re-	Resrch		Funding
Central receiver CSP plants, or power towers, are built on a very large scale (typically 50 to 100 MW or more). They require sig- nificant capital, and the 150- to 250-metre-tall tower can take up to two years to build. Conversely, utility photovoltaic (PV) plants can potentially be constructed within six months and re-	~	√	\checkmark
quire much less upfront capital. This project intends to design and optimise a CSP plant composed of an array of heliostat field/tower modules (multi-tower system) that can be constructed quickly and sequentially and supply a single power plant. Such a sys- tem has the potential to start generating electricity (and hence revenue) after the completion of the first module of the array. The study will develop a simulation of the multi-tower, includ- ing optical and thermal components, together with a cost model, which will be used to optimise the system's configuration. See e.g. https://doi.org/10.1063/5.0028916. Requirements: none			

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Advanced Acoustic Monitoring for Predictive Maintenance in Concentrated Solar Power Plants This project aims to develop and implement an advanced acoustic monitoring system for predictive maintenance in parabolic trough concentrated solar power (CSP) plants. The research will focus on replacing manual listening techniques with a network of strategi- cally placed acoustic sensors to detect early signs of thermal stress				
and metal fatigue in collector tubes and piping systems. The study will involve designing an array of acoustic emission (AE) sensors, developing signal processing algorithms to interpret the collected data, and creating machine learning models to predict potential failures. The project will explore integrating this acoustic moni- toring system with other sensor data (e.g., temperature, pressure, flow rates) to enhance the accuracy of failure predictions and op- timize maintenance schedules. The ultimate goal is to improve the reliability and efficiency of CSP plants while reducing downtime and maintenance costs, thus contributing to the broader objective of industrial decarbonization.				
Analytical Solutions to Non-imaging Solar Concentrator Opti-		\checkmark	\checkmark	\checkmark
cal Design		-	-	•
This project aims to develop an analytical method for generating the optical surface of solar concentrators. The primary objective is to create a mathematical model that determines the ideal surface geometry to achieve a specified irradiance distribution on a target, given a set of input ray parameters. The study may incorporate varying solar irradiance data over daily and annual cycles to gen- erate an optical surface design. The performance of the analytical solution will be comparatively assessed against conventional track- ing troughs and heliostats, potentially offering insights into more efficient solar concentration techniques for industrial decarboniza- tion applications.				

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Novel Ceramic Composites for Thermal Energy Storage		\checkmark	\checkmark	\checkmark
 Investigation of Novel Ceramic Composites for Thermal Energy Storage This project aims to develop advanced ceramic composite materials for thermal energy storage (TES) applications, partic- ularly in molten salt storage systems. The research will explore innovative fabrication methods, material compatibility, the effects of additives (e.g., graphene), reliability, and novel compositions to improve the thermal and structural properties of the storage media. The project will involve material characterization, compat- ibility testing, and optimization to identify suitable ceramic-based alternatives to conventional molten salt storage materials. Addi- tionally, the project includes the design, fabrication, and testing of an experimental TES testbed to validate the performance of the developed ceramic composites. Transient Modeling and Simulation of Thermal Energy Stor- age Systems** This project focuses on developing a detailed tran- sient model for thermal energy storage (TES) systems. The model will simulate the dynamic behaviour of the TES system, account- ing for environmental factors, charge/discharge cycles, and design changes. The goal is to create a comprehensive simulation tool to provide insights into TES system performance and enable in- formed decision-making and optimization. The model will be ex- tensively validated against experimental data from the TES testbed developed in the first project, and the model's limitations will be identified to ensure reliable and accurate predictions. 				
High Temp Heat Pumps This project focuses on developing an advanced thermodynamic model for high-temperature industrial heat pumps. The model will simulate the performance and efficiency of heat pump systems ca- pable of generating heat above 100°C, which is critical for displac- ing fossil fuel-based industrial heating processes. The project will involve gathering data on the latest heat pump technologies, incor- porating realistic operating conditions, and validating the model against experimental results. The goal is to provide a robust tool for optimizing high-temp heat pump designs to support industrial decarbonization efforts. Requirements: none			~	~
Mini Industry Heat Network				
Title: (District, Wooster) Description: This project aims to develop a detailed model and feasibility study for implementing a mini-industry heat network in the Wooster district. The goal is to analyze the potential for recovering and distributing waste heat from nearby industrial facilities to supply surrounding users. The project will involve mapping heat sources and sinks, designing an optimal heat distribution network, and evaluating such a system's technical and economic viability. The findings could inform future district-level decarbonization efforts in similar industrial areas.				

PROF CRAIG MCGREGOR

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Requirements: none				
Design and thermodynamic modelling of a compound piston steam expander for concentrating solar thermal applications		\checkmark	~	
For several years, the Solar Thermal Energy Research Group has developed steam piston expansion (steam engine) technology op- timized for application in concentrating solar power (CSP). This research culminated in 2022 when a previous student converted a Detroit diesel engine to run on compressed air and steam. This research topic expands this research by considering the applica- tion of compound (multi-stage) steam engines. Steam piston ex- panders offer advantages over steam turbines at smaller scales where turbines are costly, whilst compound engines offer higher cycle efficiencies than a single expansion cycle. The project has two primary focus areas: the Rankine cycle ther- modynamic modeling and the mechanical design of a commercial- scale compound steam engine. The Rankine cycle thermodynamic model will enable the assessment of the system's performance across diverse conditions, ensuring optimal energy extraction from concentrated solar sources. The program's second facet delves into the mechanical realm, where the compound steam engine's crucial components are designed to enhance energy conversion efficiency and overall operational robustness. Practical application: The project offers a unique chance to de- velop energy modeling and design skills in a project that combines mechanical engineering with sustainable energy technology. Requirements: thermodynamics				
Design and analysis of glass alternative concentrated solar		~	~	\checkmark
Mirrored glass is the most common material for reflectors used in the concentrated solar power (CSP) industry. However, glass has many undesirable properties. The research aims to develop feasi- ble glass alternative reflectors for CSP applications. The project will involve structural design, prototype building, and perfor- mance testing. Various simulation technologies can also be incor- porated into the project. Requirements: none				

PROF CRAIG MCGREGOR

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Concentrating Solar Power Grid Services for the South African Electricity Network		~	~	~
This project aims to assess the ability of Concentrating Solar Power (CSP) technology to provide grid services and support the integra- tion of renewable energy in the South African electricity network. The study will evaluate the performance and capabilities of vari- ous CSP technologies in providing services like grid stability, load balancing, and renewable energy integration. (i) Economic Eval- uation: The project will model the impact of CSP technology in a competitive bid market, using classical programming languages (e.g., Python, MATLAB) coupled with optimization toolboxes. This analysis will quantify the economic benefits of deploying CSP- based grid services and make the models available to plant de- signers and grid managers. (ii) Grid Stability Analysis: The project will conduct a stochastic analysis to evaluate CSP technology's grid stability impacts based on realistic renewable resource variability modelling using South African meteorological data. The perfor- mance of CSP with thermal energy storage will be compared to				
the other technologies under different load scenarios, using a co- optimization approach that considers economic and risk-aversion criteria. Various simulation models, such as Python-based PyPSA and PLEXOS, will be considered to assess the grid services pro- vided by the CSP technologies. The outcomes of this research can help inform policymakers, grid operators, and CSP developers on the potential benefits and strategies for leveraging CSP technology to enhance the resilience and sustainability of the South African power grid. Requirements: none				

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Numerical Solution for a Solar Concentrating Optical Surface	\checkmark	\checkmark		\checkmark
Design				
The project aims to investigate a numerical solution for the opti-				
cal surface of a solar concentrator. The topic's primary objective				
is to develop a method to solve the analytical solution for an opti-				
cal surface that would irradiate a given target, given a set of input				
rays. Using the developed model, a solution for the optical sur-				
face can be found for different input cases. An optimised optical				
surface can be found using an input dataset that is representative				
of solar irradiance over a day (or a year). The optimised solu-				
tion can be compared to traditional tracking troughs/heliostats.				
This approach particularly applies to photoelectrochemical (PEC)				
hydrogen production, where reactors have unique irradiance re-				
quirements. The ability to control input and output rays dur-				
ing the design phase allows for carefully addressing these specific				
needs in PEC systems. The following paper shows how concentrat-				
ing optics is incorporated into a PEC hydrogen production system:				
https://doi.org/10.1038/s41560-023-01247-2.				
Requirements: none				

Prof Josua Meyer jpm2@sun.ac.za

• Research Field Heat transfer

• General Description of Research Field

Heat transfer conveys energy from a high temperature to a lower temperature. The mechanisms of heat transfer are defined as conduction, radiation and convective. In convective heat transfer the heat transfer might be external forced convection, internal forced convection, or natural convection. Heat transfer has many applications and happens everywhere.

The human body is constantly generating and/or rejecting heat by metabolic processes and exchanged with the environment and among internal organs by conduction, convection, evaporation, and radiation. Heat transfer is also one of the most important factors to consider when designing household appliances such as a heating and air-conditioning system, refrigerator, freezer, water heater, personal computer, mobile phone, TV, etc.

Heat transfer also occurs in many other applications such as in car radiators, solar collectors, orbiting satellites, etc. However, one of the most important applications is in the generation of electricity which can happen in fossil fuel power plants, nuclear power plants or concentrating solar plants. The heat transfer during the generation of electricity happens in heat exchangers which normally has at least one passage through which a fluid flows. The passage geometry can be as simple such as a circular tube or it can have a very complex geometry with fins that not only enhances the heat transfer but induces flow rotation which reduces the size of the heat exchanger.

For all these configurations empirical correlations are required for design and analyses purposes that can be used to estimate heat transfer rates. To develop thousands of empirical equations are not desirable as we first need to have a better understanding of the fundamentals and flow phenomena. Furthermore, different flow regimes (laminar, transitional or turbulent) normally each require its own empirical equations. Thus, to be able to understand complex heat transfer flow phenomena in complex geometries we must first understand what happens in simple geometries, such as in circular tubes.

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Developing flow in smooth circular horizontal tubes with a uniform wall temperature; forced and mixed convection. Rel- evant to concentrated solar power (CSP) generation and heat transfer in blood vessels through human organs. A lot of work has been conducted in the field of heat transfer in circular tubes. Most of this work was limited to forced convection flow through horizontal tubes, and with fully developed flow. Thus implying that the flow was both hydrodynamically and thermally fully developed. However, forced convection occurs very rarely in practical applications. It only occurs for heat transfer in small tube diameters, low heat fluxes and for flow in zero gravity con- ditions. Therefore, if the heat transfer condition does not satisfy forced convection conditions the heat transfer phenomena would definitely and most probably result in mixed convection. However, no work has been done for mixed convection with a uniform wall temperature during developing conditions. The purpose of this study would therefore be to numerically investigate and compare with CFD in a circular tube developing flow for forced and mixed convection with a uniform wall temperature.				
Local and average heat transfer coefficients for developing single-phase laminar flow in horizontal circular tubes with a constant heat flux boundary condition. Wide range of Prandtl numbers. Relevance: concentrated solar power (CSP) genera- tion and heat transfer in blood vessels through human organs. Correlations to calculate the local and average heat transfer coefficients for single-phase laminar flow in horizontal circular tubes with a constant heat flux are usually restricted to fully developed flow, high Prandtl numbers or constant fluid proper- ties. Recently work has been conducted with water (see URL: 10.1016/j.ijheatmasstransfer.2017.10.070). The purpose of this study is to conduct a similar study, however, using CFD, and as working fluids air and glycol. The reason for air and glycol is that its Prandtl numbers are about an order of magnitude lower and higher than that of water. The equations that were developed in the previous study for water can therefore not be used for a wide range of Prandtl number applications. Requirements: CFD			✓	

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Local and average heat transfer coefficients for developing single-phase laminar gas and glycol flow in horizontal circular tubes with a uniform temperature boundary condition. Rele- vant to concentrated solar power (CSP) generation and heat transfer in blood vessels through human organs. Correlations to calculate the local and average heat transfer coefficients for single-phase laminar flow in horizontal circular tubes with a uniform heat flux are usually restricted to fully developed flow, high Prandtl numbers or constant fluid proper- ties. Recently work has been conducted with water (see URL: 10.1016/j.ijheatmasstransfer.2017.10.070). The purpose of this study is to conduct a similar study, however, using CFD, with air and glycol as working fluid. The reason for air and glycol is that its Prandtl numbers are about an order of magnitude lower and higher than that of water. The equations that were developed in the previous study for water can therefore not be used for a wide range of Prandtl number applications and were also developed for a constant heat flux boundary condition – not a uniform wall tem- perature. In this study a uniform heat flux needs to be used. Requirements: CFD				
Local and average heat transfer coefficients for developing single-phase laminar gas and glycol flow in horizontal circu- lar tubes with a uniform heat flux boundary condition. Rele- vant to concentrated solar power (CSP) generation and heat transfer in blood vessels through human organs. Correlations to calculate the local and average heat transfer coefficients for single-phase laminar flow in horizontal circular tubes with a constant heat flux are usually restricted to fully developed flow, high Prandtl numbers or constant fluid proper- ties. Recently work has been conducted with water (see URL: 10.1016/j.ijheatmasstransfer.2017.10.070). The purpose of this study is to conduct a similar study, however, using CFD, with and air and glycol as working fluid. The reason for air and glycol is that its Prandtl numbers are about an order of magnitude lower and higher than that of water. The equations that were developed in the previous study for water can therefore not be used for a wide range of Prandtl number applications and were also devel- oped for a constant heat flux boundary condition – not a uniform wall temperature. In this study a uniform heat flux needs to be used. Requirements: CFD				

Dr Michael Owen mikeowen@sun.ac.za

Research Field Host transfer thermodynamics, fluid mechanics

Heat transfer, thermodynamics, fluid mechanics

General Description of Research Field

Overall my research aims to contribute to sustainable production, use and manipulation of thermal energy. I make use of a combination of experimental, numerical (typically by means of CFD) and analytical methods to investigate thermodynamic cycles, thermal energy systems and components at a number of levels including high level feasibility analysis, system testing and analysis and component-level testing and simulation. There is a strong focus on industrial heat exchangers and cooling towers in particular (dry, wet and hybrid), as these systems directly affect thermal power plant efficiency (fossil-fuelled, nuclear and renewable) and have a direct influence on the energy/water nexus.

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Reduced-order modelling of air-cooled condenser perfor- mance under windy conditions		~		
Air-cooled condensers (ACCs) are a direct dry cooling technology that significantly reduces the water footprint of thermal power generation. These systems are widely used in concentrating so- lar power (CSP) plants since these plants are typically built in arid regions with high solar resource but limited water availability. The performance of the condenser direclty impacts the thermal ef- ficiency of the power plant (by influencing the turbine back pres- sure) and is thus a critical (but often overlooked) component in the power cycle. The majority of ACCs are mechanical draft systems where air flow is driven by large axial fans. As an alternative, natural draft sys- tems use bouyancy as the motive force and thus eliminate the need for fans (thus offering benefits in terms of net power out- put). There is currently only one natural draft ACC at a CSP in the world (Khi Solar 1, Upington South Africa), and the relative per- formance and costs (compared to mechanical draft systems) are not well understood. Ultimately, our aim is to conduct a direct comparison of mechan- ical and natural draft ACCs for application in CSP based on life- cycle cost. This comparison requires an understanding of how these two systems would perform over a typical meteorological year in a representative location (taking into account ambient con- ditions including temperture and wind). In this project, we will develop a reduced order model of the performance of a mechan- ical draft ACC (using CFD simulations to generate training data) as a function of both ambient temperature and wind. This model will be applied in the overarching comparitive study mentioned				

DR MICHAEL OWEN

Requirements:The project requires the student to have completed, or to do, a CFD module (or have relevant experience with CFD). ANSYS FLUENT is the preferred software.Student of a reduced order model (ROM) for a bespokeDevelopment of a reduced order model (ROM) for a bespoke	Struct	Resrch	Funding
Requirements:The project requires the student to have completed, or to do, a CFD module (or have relevant experience with CFD). ANSYS FLUENT is the preferred software.Development of a reduced order model (ROM) for a bespoke			
Development of a reduced order model (ROM) for a bespoke		,	
natural draft direct dry cooling system (NDDDCS) finned tube heat exchanger		\checkmark	
heat exchanger Modern thermal power plants in arid and semi-arid locations em- ploy water conserving dry cooling technologies to reject the re- quired heat from the cycle to the environment. Among these tech- nologies are traditional mechanical draft air-cooled condensers (ACCs), natural draft indirect dry cooling systems and a new al- ternative, the natural draft direct dry cooling system (NDDDCS). ACCs employ a multitude of large diameter axial flow fans to force airflow across heat exchanger bundles. The capital cost of these systems are relatively low, but operational costs are high due to parasitic power consumption and maintenance cost on the many moving parts. Direct steam condensation inside the finned tubes of the heat exchangers ensure high thermal efficiencies. In contrast, natural draft indirect dry cooling systems use the natural draft cre- ated by buoyancy effects to drive airflow through a large cooling tower, and across heat exchanger bundles around the tower pe- riphery at ground level. Such systems utilize a shell-and-tube con- denser to condense the turbine exhaust steam, while a separate loop pumps the cooling water to be re-cooled in the cooling tower. Due to their large footprint, these systems have high capital costs, but operational costs are much reduced compared to the ACC due to the reduced rotating mechanical equipment requirement. The NDDDCS combines the advantages of reduced operational cost of a natural draft system with the higher thermal efficiencies of direct steam condensation, as steam is conveyed directly from the turbine exhaust into heat exchangers in a natural draft cooling tower. This study will develop a reduced order parametric model (ROM) of the thermo-hydraulic performance of a flattened finned tube heat exchanger, based on the results of multiple Computational Fluid Dynamics (CFD) simulations. The intention is to find the best combination of tube and fin geometry that would provide an opti- mal finned tube for application within a give			

Dr Michael Owen

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Modelling annual performance of a natural draft direct dry		\checkmark		
cooling system (NDDDCS) for a 50 MWe concentrating solar				
power (CSP) application				
Modern thermal power plants in arid and semi-arid locations em-				
ploy water conserving dry cooling technologies to reject the re-				
quired heat from the cycle to the environment. Among these tech-				
nologies are traditional mechanical draft air-cooled condensers				
(ACCS), flatural draft findirect dry cooling systems and a new al-				
ACCs ampley a multitude of large diameter axial flow fans to force				
airflow across heat exchanger hundles. The capital cost of these				
systems are relatively low but operational costs are high due to				
parasitic power consumption and maintenance cost on the many				
moving parts. Direct steam condensation inside the finned tubes of				
the heat exchangers ensure high thermal efficiencies. In contrast,				
natural draft indirect dry cooling systems use the natural draft cre-				
ated by buoyancy effects to drive airflow through a large cooling				
tower, and across heat exchanger bundles around the tower pe-				
riphery at ground level. Such systems utilize a shell-and-tube con-				
denser to condense the turbine exhaust steam, while a separate				
loop pumps the cooling water to be re-cooled in the cooling tower.				
Due to their large footprint, these systems have high capital costs,				
but operational costs are much reduced compared to the ACC due				
to the reduced rotating mechanical equipment requirement. Indi-				
ciencies compared to direct systems. The NDDDCS combines the				
advantages of reduced operational cost of a natural draft system				
with the higher thermal efficiencies of direct steam condensation,				
as steam is conveyed directly from the turbine exhaust into heat				
exchangers in a natural draft cooling tower.				
This study will develop a reduced order model (ROM) of NDDDCs				
performance as a function of ambient conditions (including wind),				
based on the results of multiple Computational Fluid Dynamics				
(CFD) simulations. The intention is to evaluate the annual per-				
formance of a NDDDCS without having to simulate each ambient				
condition using CFD. The work will continue development of an				
existing CFD model of a NDDDCS, and the investigation will con-				
sider system performance as part of a 50 million concentrating solar power (CSD) plant. The NDDDCS will be sized for a typical CSD				
application and design of experiments will be used to develop the				
ROM.				
(This project will be co-supervised by Dr Hannes Pretorius and				
will form part of research conducted by the Solar Thermal Energy				
Research Group).				
Requirements: Strong interest and performance in Thermo-fluids				
modules. Computational Fluid Dynamics.				

Dr Michael Owen

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Investigating the impact of site winds on utility-scale PV power		\checkmark		\checkmark
plant output				
Solar power generation using Photovoltaic (PV) power plants has				
seen a dramatic rise in popularity in recent years. Large PV plants				
continue to be constructed all around the world including South				
Africa. Due to the continually decreasing price of PV panels and				
the relative construction simplicity of such power plants, it is ex-				
pected that they will remain competitive in the medium to long				
term.				
The efficiency of PV modules is negatively affected by an increase				
in operating temperature of the module. To predict power output				
accurately, it is important that the heat dissipation from the PV				
module is accurately modelled. Forced convection heat transfer				
from modules due to winds at a PV power plant site can reduce the				
operating temperatures of the modules. This reduction in temper-				
ature improves their efficiency and ultimately enhances the plant's				
output. The impact of wind on module temperature is likely to				
be different across the PV array and sensitive to both wind speed				
and direction. There is little understanding of this behaviour at				
present.				
This study will evaluate the impact of winds on the module tem-				
perature and corresponding output of a utility-scale PV power				
plant. Computational Fluid Dynamics (CFD) models will be used				
to evaluate the flow over the modules in order to determine their				
effective temperature. Existing one-dimensional models and / or				
commercial software will be used to assess the resulting impact				
on plant performance. With a better understanding of wind effects				
and associated temperature distributions, several possible research				
accounting for prevailing wind direction in the orientation of a PV				
nlant?)				
This topic will be co-supervised by Dr Hannes Pretorius and Dr				
Arnold Rix (E&E).				
Bequirements: Strong interest and performance in Thermo-fluids				
modules. Computational Fluid Dynamics				
Ontimicing specific energy consumption in recovery pends for				
large scale aquafarming of seaweed for biofuel generation		v		
Converse in the transition to				
sustainability in many industries. A common type of farming oc				
curs in onshore ponds, where the seaweed is kept in suspension				
using aeration or paddle wheels to introduce turbidity into the wa-				
ter. A key parameter for the economic feasibility of any land-based				
aquaculture project is the energy required to keep the seaweed sus-				
pended. This study will use numerical models to optimise raceway				
pond geometry for minimum specific energy consumption while				
maintaining adequate turbidity distribution.				
This project will be co-supervised by Dr Adam Venter and will be				
in collaboration with an industry partner.				
Requirements: CFD				

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Curbing food losses through solar drying integrated with biogas-assisted dehumidification	✓	\checkmark		~
See full topic description under Prof Eugene van Rensburg. The project will be co-supervised by Prof van Rensburg and myself.				
Requirements: See full topic description.				

Dr Hannes Pretorius

jpp@sun.ac.za

• Research Field Thermofluids & Solar Energy

• General Description of Research Field Dry cooling systems for power generation applications; Axial flow fan performance; Heat transfer analysis from PV panels; Floating solar PV power generation; Thermo-economic evaluation on CSP / PV power plants

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Comparative techno-economic assessment of dry cooling sys-		\checkmark		
tem alternatives for a 50 MWe concentrating solar power				
(CSP) application				
Modern thermal power plants in arid and semi-arid locations em-				
ploy water conserving dry cooling technologies to reject the re-				
quired heat from the cycle to the environment. Among these tech-				
nologies are traditional mechanical draft air-cooled condensers				
(ACCs), natural draft indirect dry cooling systems and a new al-				
ternative, the natural draft direct dry cooling system (NDDDCS).				
ACCs employ a multitude of large diameter axial flow fans to force				
airflow across heat exchanger bundles. The capital cost of these				
systems is relatively low, but operational costs are high due to par-				
asitic power consumption and maintenance cost on the many mov-				
ing parts. Direct steam condensation inside the finned tubes of the				
heat exchangers ensures high thermal efficiencies. In contrast, nat-				
ural draft indirect dry cooling systems use the natural draft created				
by buoyancy effects to drive annow through a large cooling tower,				
and across heat exchanger buildles around the tower periphery at ground lovel. Such systems utilize a shell and tube condensor to				
condense the turbine exhaust steam while a separate loop numps				
the cooling water to be re-cooled in the cooling tower. Due to				
their large footprint these systems have high capital costs but				
operational costs are much reduced compared to the ACC due to				
the reduced rotating mechanical equipment requirement. Indirect				
steam condensation to cooling results in lower thermal efficiencies				
compared to direct systems. The NDDDCS combines the advan-				
tages of reduced operational cost of a natural draft system with the				
higher thermal efficiencies of direct steam condensation, as steam				
is conveyed directly from the turbine exhaust into heat exchangers				
situated inside a natural draft cooling tower.				
This study will evaluate the Levelized Cost of Electricity (LCOE)				
for each cooling option, as part of a 50 MWe concentrating so-				
lar power plant. The investigation will build on one-dimensional				
thermo-fluid models which have been developed for each of these				
systems to evaluate the performance of each over an annual ba-				
sis. Costing models will also be developed towards performing the				
(This project will form part of records conducted by the Color				
Thermal Energy Research Group)				
De entirementer (transistementer 1 (1 1				
kequirements: Strong interest and performance in Thermo-fluids				
modules.				

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Sensitivity analysis on a natural draft direct dry cooling sys-		\checkmark		
tem (NDDDCS) for large- and medium-scale power generation				
applications				
Modern thermal power plants in arid and semi-arid locations em-				
ploy water conserving dry cooling technologies to reject the re-				
quired heat from the cycle to the environment. Among these tech-				
nologies are traditional mechanical draft air-cooled condensers				
(ACCs), natural draft indirect dry cooling systems and a new al-				
ternative, the natural draft direct dry cooling system (NDDDCS).				
ACCs employ a multitude of large diameter axial flow fans to force				
airflow across heat exchanger bundles. The capital cost of these				
systems is relatively low, but operational costs are high due to par-				
asitic power consumption and maintenance cost on the many mov-				
ing parts. Direct steam condensation inside the finned tubes of the				
heat exchangers ensures high thermal efficiencies. In contrast, nat-				
ural draft indirect dry cooling systems use the natural draft created				
by buoyancy effects to drive airflow through a large cooling tower,				
and across heat exchanger bundles around the tower periphery at				
ground level. Such systems utilize a shell-and-tube condenser to				
the cooling water to be re cooled in the cooling tower. Due to				
their large footprint, these systems have high capital costs but				
operational costs are much reduced compared to the ACC due to				
the reduced rotating mechanical equipment requirement. Indirect				
steam condensation to cooling results in lower thermal efficiencies				
compared to direct systems. The NDDDCS combines the advan-				
tages of reduced operational cost of a natural draft system with the				
higher thermal efficiencies of direct steam condensation, as steam				
is conveyed directly from the turbine exhaust into heat exchangers				
situated inside a natural draft cooling tower.				
This study will conduct a sensitivity analysis on the performance				
of a NDDDCS for changes to the heat exchanger configuration,				
heat exchanger performance characteristics, tower geometry and				
shape, and inclusion of wind mitigation measures. The investi-				
gation will build on current Computational Fluid Dynamics (CFD)				
models of a NDDDCS which have been developed for medium (100				
MW CSP) and large (900 MW thermal) scale power generation ap-				
plications. CFD simulations will be executed based on the updated				
geometries and features and the impact on system performance				
assessed.				
(This project will form part of research conducted by the Solar				
Thermal Energy Research Group)				
Requirements: Strong interest and performance in Thermo-fluids				
modules. Computational Fluid Dynamics.				

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Development of a reduced order model (ROM) for a bespoke		\checkmark		
natural draft direct dry cooling system (NDDDCS) finned tube				
heat exchanger				
Modern thermal power plants in arid and semi-arid locations em-				
ploy water conserving dry cooling technologies to reject the re-				
quired heat from the cycle to the environment. Among these tech-				
nologies are traditional mechanical draft air-cooled condensers				
(ACCs), natural draft indirect dry cooling systems and a new al-				
ternative, the natural draft direct dry cooling system (NDDDCS).				
airflow across heat exchanger hundles. The capital cost of these				
systems is relatively low but operational costs are high due to par-				
asitic power consumption and maintenance cost on the many mov-				
ing parts. Direct steam condensation inside the finned tubes of the				
heat exchangers ensures high thermal efficiencies. In contrast, nat-				
ural draft indirect dry cooling systems use the natural draft created				
by buoyancy effects to drive airflow through a large cooling tower,				
and across heat exchanger bundles around the tower periphery at				
ground level. Such systems utilize a shell-and-tube condenser to				
condense the turbine exhaust steam, while a separate loop pumps				
the cooling water to be re-cooled in the cooling tower. Due to				
their large footprint, these systems have high capital costs, but				
operational costs are much reduced compared to the ACC due to				
the reduced rotating mechanical equipment requirement. Indirect				
steam condensation to cooling results in lower thermal efficiencies				
tages of reduced operational cost of a natural draft system with the				
higher thermal efficiencies of direct steam condensation as steam				
is conveyed directly from the turbine exhaust into heat exchangers				
situated inside a natural draft cooling tower.				
Mechanical draft ACCs employ flattened finned tube heat ex-				
changer tubes. These tubes were specifically developed for me-				
chanical draft applications and may not be optimal within the con-				
text of a NDDDCS.				
This study will develop a reduced order parametric model (ROM)				
of the thermo-hydraulic performance of a flattened finned tube				
heat exchanger, based on the results of multiple Computational				
Fluid Dynamics (CFD) simulations. The intention is to find the best				
combination of tube and fin geometry that would provide an opti-				
will continue the development of a surrent CED model and POM				
that evaluated limited parameter variations. The ROM will also				
be integrated into an existing one-dimensional NDDDCS model to				
predict the optimal tube configuration based on the selected ND-				
DDCS design.				
(This project will be co-supervised by Prof Mike Owen and will				
form part of research conducted by the Solar Thermal Energy Re-				
search Group)				
Requirements: Strong interest and performance in Thermo-fluids				
modules. Computational Fluid Dynamics.				

DR HANNES PRETORIUS

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Performance modelling of axial drive- and power turbines for		\checkmark		
a supercritical carbon dioxide (sCO2) power cycle				
Concentrated Solar Power (CSP) is a renewable energy source that				
traditional energy sources like coal natural gas and nuclear En-				
vironmental fluctuations and varying output requirements impact				
CSP plants' thermal and economic performance, causing efficiency				
reductions when operating off-design. Consequently, large and				
costly CSP plants are needed to meet energy demands. Techno-				
economic analyses indicate that improving power block efficiency				
can significantly reduce costs.				
Global research interest into supercritical carbon dioxide (sCO2)				
power cycles is increasing, due to their superior efficiencies and				
reduced component size requirements. These cycles, linked to CSP				
applications represent a modern evolution to sustainable and effi-				
cient power production.				
The design of turbomachinery for sCO2 cycles is critical, as effi-				
ciency greatly affects the system. The unique properties of CO2 in				
the critical region pose challenges, prompting extensive research.				
One-dimensional (1D) mean-line models are favoured for analy-				
sis and design due to their lower computational cost compared				
to three-dimensional (3D) Computational Fluid Dynamics (CFD)				
models. Choosing suitable loss correlations is key for accurate tur-				
bomachinery modelling and reliable efficiency results.				
This work aims to design efficient drive and power turbines for a				
50 MWe CSP plant using a sCO2 power cycle. This involves prelim-				
for the real are effects of CO2 and various loss mechanisms. Addi				
tionally CED simulations will validate the turbing designs at their				
selected operational speeds				
(NOTE: This topic has already been allocated to a student for				
2025)				
(This project will be co-supervised by Prof Ryno Laubscher and				
will form part of research conducted by the Solar Thermal Energy				
Research Group)				
Requirements: Strong interest and performance in Thermo-fluids				
modules. Computational Fluid Dynamics.				

TOPICS	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Optimization of a natural draft direct dry cooling system (ND- DDCS) for a supercritical carbon dioxide (sCO2) power cycle using an artificial-intelligence-based surrogate model		√		
Global research interest into supercritical CO2 (sCO2) power cy- cles is increasing, due to their superior efficiencies and reduced component size requirements. These cycles, linked to concentrated solar power (CSP) applications represent a modern evolution to sustainable and efficient power production. The sCO2 cycle needs a heat rejection system to dissipate heat loads from the pre-cooler and intercooler heat exchangers to the environment. To further enhance cycle efficiency and promote sustainability, a heat rejec- tion system with low parasitic power- and no water consumption requirements would be very beneficial. Modern thermal power plants in arid and semi-arid locations em- ploy water conserving dry cooling technologies to reject the re- quired heat from the cycle to the environment. Among these tech- nologies are traditional mechanical draft air-cooled condensers (ACCs), natural draft indirect dry cooling systems and a new al- ternative, the natural draft direct dry cooling system (NDDDCS). This study will optimize a NDDDCS for the pre-cooler and inter- cooler heat loads of a sCO2 power cycle, linked to a 50 MWe CSP plant. The work will modify and utilize an existing co- simulation model (coupled Flownex one-dimensional and Fluent three-dimensional Computational Fluid Dynamics model) that has been developed to assess the performance of a NDDDCS specifi- cally for this application. The optimization will consider alterna- tive cooling tower shape and heat exchanger configurations. A neural network surrogate model, to be developed using the co- simulation model, will be used to perform the optimization. (NOTE: This topic has already been allocated to a student for 2025.) (This project will be co-supervised by Mr Rashid Haffejee and will form part of research conducted by the Solar Thermal Energy Re- search Group)				

DR HANNES PRETORIUS

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Investigating the impact of site winds on utility-scale PV power plant output		\checkmark		\checkmark
Solar power generation using Photovoltaic (PV) power plants has seen a dramatic rise in popularity in recent years. Large PV plants continue to be constructed all around the world, including South Africa. Due to the continually decreasing price of PV panels and the relative construction simplicity of such power plants, it is ex- pected that they will remain competitive in the medium to long term. The efficiency of PV modules is negatively affected by an increase in operating temperature of the module. To predict power output accurately, it is important that the heat dissipation from the PV module is accurately modelled. Forced convection heat transfer from modules due to winds at a PV power plant site can reduce the operating temperatures of the modules. This reduction in temper- ature improves their efficiency and ultimately enhances the plant's output. The impact of wind on module temperature is likely to be different across the PV array and sensitive to both wind speed and direction. There is little understanding of this behaviour at present. This study will evaluate the impact of prevailing winds on the module temperature and corresponding output of a utility-scale PV power plant. Computational Fluid Dynamics (CFD) models will be used to evaluate the flow over the modules in order to determine their effective temperature. Existing one-dimensional models and / or commercial software will be used to assess the resulting im- pact on plant performance. With a better understanding of wind effects and associated temperature distributions, several possible research questions can be interrogated (e.g. is there a potential benefit to accounting for prevailing wind direction in the orienta- tion of a PV plant?) (NOTE: This topic has already been allocated to a student for 2025.) (This topic will be co-supervised by Prof Mike Owen and Dr Arnold Rix (E&E), and a full scholarship from SCATEC will most likely be available) Requirements: Strong interest and performance in Thermo-fluids				

Dr Willie Smit

wjsmit@sun.ac.za

Research Field

Robotics and Control in Concentrated Solar Power Plants

• General Description of Research Field

The Solar Thermal Energy Research Group (STERG) is researching environmentally friendly and sustainable solar thermal technologies. In particular, we are looking at concentrated solar power (CSP) plants. We think that multi-copters and ground-based robots can provide services to plant operators.

Here is a good video that gives an overview of the state-of-the-art CSP plant: https://youtu. be/QW42wBthN2A

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
A Novel Heliostat Facet Design		\checkmark		
A heliostat is a facet (mirror) placed on a pedestal. The facet is controlled by two actuators so that it reflects and concentrates so- lar rays onto a target that can be hundreds of meters away. Our research group has done a lot of work on new heliostat de- signs. The design shows a lot of promise. This project aims to design a heliostat facet for mass production. The design should then be built and tested.				
Requirements: None.				
Locating a Drone Close to a Parabolic Trough		\checkmark		
Parabolic troughs concentrate solar rays onto a central tube. The tube contains oil that heats up to close to 400 'C. The heated oil is used to generate steam which powers a turbine. The mirrors need to be cleaned every few days. It should be easy for a drone to automatically clean the mirrors. This project aims to develop a system with which the drone can accurately locate itself inside the parabolic trough. The system might use ultrasonic sensors, cameras, laser range finders and so on.				
Requirements: Good programming skills.				

Dr Gerrit Ter Haar gterhaar@sun.ac.za

• Research Field

Overcoming metal corrosion degradation in hydrogen cells

• General Description of Research Field

Metal corrosion is a significant challenge in hydrogen electrolyzers and fuel cells, primarily due to the harsh electrochemical environments present in these devices. In electrolyzers, the anode experiences highly oxidizing conditions during the oxygen evolution reaction, leading to corrosion of metallic components. This corrosion can result in the degradation of electrode materials, reduced efficiency, and contamination of the produced hydrogen. This metal degradation not only diminishes the performance and lifespan of the devices but can also lead to the release of metal ions that may poison catalysts or contaminate membranes. Consequently, the development of corrosion-resistant materials and protective coatings is crucial for enhancing the durability and efficiency of hydrogen electrolyzers and fuel cells. Corrosion-resistant materials such as titanium are popular, but expensive. Therefore, to reduce costs, materials engineers are investigated alternative approaches. One such approach is in using low-cost material (e.g., stainless steel) and applying ani-corrosive surface treatments. This project entails investigating cheaper alternative materials, characterising them and validating their performance in an anodic environment that matches that of real-world cell conditions. Potential funding is available.

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Design, build and test a solid oxide electrolysis cell		\checkmark		~
A Solid Oxide Electrolysis Cell (SOEC) is a device that uses elec-				
tricity to split water (or sometimes carbon dioxide) into hydrogen				
(and potentially carbon monoxide). Operating at high tempera-				
tures (600-900°C), SOECs are highly efficient, particularly when				
using waste heat or renewable electricity. This makes them a				
promising technology for large-scale hydrogen production, energy				
storage, and carbon utilization. However, the high operating tem-				
peratures present challenges, such as material degradation, ther-				
mal cycling stress, and high costs. Research is focused on improv-				
ing durability, reducing costs, and optimizing integration with re-				
newable energy sources. This project entails the design, manufac-				
turing and testing of a small-scale SOEC with a focus on materials				
engineering to overcome the challenges mentioned.				
Requirements: Previous experience with design and manufactur-				
ing of mechanical systems will be useful. Interested in materials				
engineering.				

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Materials engineering of metal hydride hydrogen storage		\checkmark	\checkmark	\checkmark
structures				
Hydrogen is emerging as a crucial tool in the global effort to re-				
duce carbon emissions. One of the main challenges remains safe				
storage of hydrogen. Storing hydrogen in compressed tanks is dan-				
gerous and therefore other methods are being researched such as				
metal hydrides. Metal hydride technology allows for solid-state hy-				
drogen storage through absorption and desorption processes. This				
method is safer than pressurized tanks and suitable for distributed				
storage, especially in South Africa where it reduces the need for				
extensive hydrogen infrastructure. To enhance reaction kinetics,				
powdered metal hydrides with large surface areas are used in stor-				
age tanks. Powdered metal hydrides however have poor thermal				
diffusivity, causing inefficiencies such as uneven temperatures in				
the tank, longer activation times, slower hydrogen loading, and				
difficulties in scaling up tank size. This project aims to develop				
for improved thermal management. These tanks are to be build				
using additive manufacturing (2D printing) from motal hydride				
materials. The feasibility of using additive manufacturing to huild				
complex porous structures from metal hydride materials remains				
uncertain. Therefore, this research investigates additively manu-				
factured porous (e.g. periodic and random open cellular porous)				
metal hydride structures.				
Requirements: Interest in materials science / engineering and				
design for additive manufacturing.				

Prof Eugene van Rensburg eugenevrb@sun.ac.za

• Research Field Renewable energy, Bioprocess development, Fermentation, Mushroom valorisation

• General Description of Research Field

Prof van Rensburg's main research interests include (i) bioprocess development with emphasis on fermentation systems and associated up- and downstream processing where microbes and their products are exploited for commercial gain, (ii) biomass processing and extraction of valuable products, and (iii) energy generation from agricultural, bioprocessing and industrial wastes. He seeks to integrate these foci in a multidisciplinary approach where bio-based technologies can be applied to address the Food-Energy-Water Nexus triple challenge within the context of sustainable development in rural Africa.

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Curbing food losses through solar drying integrated with biogas-assisted dehumidification	\checkmark	√		~
Solar thermal drying is a mature technology and converting per- ishable food to shelf-stable commodities through dehydration is a proven practice. Yet, effective technologies remain under-utilised in rural African settings that are frequently characterised by high levels of poverty and malnutrition. More than 30% of all fresh produce in sub-Saharan Africa (SSA) is lost or wasted after har- vesting due to spoilage or damaged during storage, transport and at markets. Affordable and low technology level interventions are thus required to lower the barriers to innovative technology de- ployment. On-farm drying is a potential solution to this challenge, which additionally empowers rural small farmers to add value and serve more predictable markets. Anaerobic digestion (AD) of farm wastes e.g., offcuts generated in the preparation for drying, such as peeling and trimming, in combination with farm animal manure, is a synergistic technology that can provide biogas as a source of heat for absorption cooling or dehumidifying desiccation, to pro- vide a dehumidification system integrated with solar drying. This study aims to assess the effectiveness of AD in combination with on-farm solar drying on representative food applications, such as fish, fruit, vegetables and leafy greens, as part of a circular food waste prevention system. An opportunity is available for postgraduate research to investi- gate the use of waste to generate cooling through the combustion of biogas from anaerobic digestion (AD) to avoid food spoilage, especially at the post-harvest stage. Integration of the AD tech- nology with a solar drying system forms a unique aspect of the work. Such technology is specifically targeted at subsistence farm- ers in rural settings throughout the African continent where such a robust and rugged system will serve as a key intervention to min- imise food losses by drying. The project will include (i) technical modelling to determine mass and energy balances to determine the sizing of all equipment components, includin				

Prof Johan van der Spuy sjvdspuy@sun.ac.za

• Research Field Turbomachinery

• General Description of Research Field

1) The use of direct dry-cooling in power generation systems is a means of ensuring sustainable water usage. The efficient, low noise, operation of the axial flow fans that form part of such an air-cooled system is essential for a well-performing system. These research topics (topics 1, 2 and 3) focus on the design, testing and analysis of axial flow fans for these systems. 2) The use of micro gas turbines (MGTs) for the propulsion of aerial vehicles or solar thermal power applications hold specific advantages. The topic is related to the development of a turboshaft micro gas turbine.

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Improving the performance of the 24 ft. installed Minwa- terCSP axial flow fan.		\checkmark	~	~
The project will specifically focus on modelling and accurately measuring the performance of the 24 ft MinwaterCSP axial flow fan. Existing work has focused on the measurement and mod- elling of this fan's performance under both stable and unstable conditions. The idea is to expand this work in order to improve the fan's per- formance under various operating conditions. The possible im- provements will be modelled in CFD and implemented in the large diameter fan.				
Requirements: CFD				
Reducing the noise signature of a large diameter axial flow cooling fan.	\checkmark	~	~	\checkmark
Existing work has focused on the measurement and modelling of the noise emitted by a large diameter cooling fan. This project will now attempt to reduce the noise characteristics of such a fan by altering the blade configuration of the fan, without replacing the fan blades. Modifications must therefore be made in the form of attachments added to the fan blade. The work will involve intensive experimental evaluation, as well as numerical modelling of the flow around the fan blades. Requirements: CFD				